

Il paziente Cardiopatico

Ilaria Rizzello

Istituto di Ematologia «Seragnoli», IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy

HIGHLIGHTS IN EMATOLOGIA TREVISO, 1-2 DICEMBRE 2023

Disclosures of Ilaria Rizzello

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
GSK						Х	x
Amgen							x
Sanofi							x
BMS							x

Cardiovascular Toxic Effects of Targeted Cancer Therapies

Anti-MM agents: 2023

Examples of Antimyeloma Therapy and Cardiac AEs

	Drug Class/Name	Reported Cardiac AEs
Chemotherapy ¹	Anthracyclines (e.g. doxorubicin, PLD)	Systolic left ventricular dysfunction, heart failure
Chemotherapy.	Alkylating agents (e.g. cyclophosphamide)	Systolic left ventricular dysfunction, heart failure, pericardial effusion, myopericarditis
	Thalidomide	Thromboembolism, bradycardia Thalidomide + dexamethasone vs placebo + dexamethasone in NDMM ⁸ •Grade 3/4 atrial fibrillation: 5% vs 3% •Grade 3/4 myocardial ischemia: 3% vs 1%
IMiDs	Lenalidomide	Thromboembolism, bradycardia Rd vs placebo + dexamethasone in relapsed MM ⁷ •Grade 3/4 cardiac failure congestive*: 1.4% vs 0.3% •Grade 3/4 atrial fibrillation*: 3.7% vs 1.1%
	Pomalidomide	Thromboembolism POM + LoDex vs POM alone in RRMM ⁶ •Cardiac failure congestive* SAE: 3% vs 0% •Atrial fibrillation* SAE: 3% vs 2%
	Bortezomib	Hypotension Grade ≥3 heart failure*: •Ranged from <1.0% - 4.7% with BTZ-based regimens across NDMM & RRMM ² •Ranged from <1.0% - 3.9% with non-BTZ-based regimens across NDMM & RRMM ²
Proteasome Inhibitors	Carfilzomib	Hypertension, cardiac failure, dyspnea Grade ≥3 cardiac failure [†] : •ASPIRE: 3.8% (KRd) vs 1.8% (Rd) in RRMM ³ •ENDEAVOR: 4.8% (Kd) vs 1.8% (Vd) in RRMM ⁴
	lxazomib	Heart failure [†] (Grades 3/4): •TOURMALINE-MM1: 2.5% (IRd) vs 1.7% (Rd) in RRMM ⁵

Cardiovascular toxicity

Proteasome Inhibitors

Cardiovascular toxicity with PIs

Georgiopoulos G, et al. J Am Coll Cardiol CardioOnc. 2023;5(1):1–21

Cardiotoxicity associated with bortezomib vs. control

Yi Xiao YI, et al. PLoS One 2014

Cardiovascular toxicity with Carfilzomib

	Нуре	ertension	Cardia	c failure	Ischemic h	eart disease	Dy	spnea
	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade \geq 3	All grades	Grade \geq 3
Phase 3 studies ASPIRE ^{37#} KPd group (n=202)	14.3	4.3	6.4	3.8	5.9	3.3	19.4	2.8
KRd group (n=392) Rd group (n=389) ENDEAVOR ^{31 §}	6.9	4.5 1.8	4.1	5.8 1.8	5.9 4.6	3.3 2.1	19.4	2.8 1.8
Kd group (n=463) Vd group (n=456) FOCUS ⁴⁰	25 9	9 3	<9 <4	<6 <3	<3 <4	<2 <3	28 13	5 2
Carfilzomib group (n=157) CS±cyclophosphamide group (n=158)	15 6	3 0	5 1	2 1			15 9	1 0
Phase 2 studies ^{38*} Carfilzomib (n=526)			7.2	5.7	3.4	1.3		
IKEMA IsaKd group (n=179) Kd group (n=123)	37 31	20 20	7 7	4 4	5 4	1 2	28 21	5 1
CANDOR DaraKd group (n=308) Kd group (n=153)	31 27	18 13	7 10	5 9	43	33	20 22	43

Carfilzomib: cardiovascular AEs

subgroup analysis

	All patients All grades heart failure n/N (%)	< 65 years All grades heart failure n/N (%)	65-74 years All grades heart failure n/N (%)	≥ 75 years All grades heart failure n/N (%)
ASPIRE ¹				
KRd	27/392 (6.9)	7/207 (3.4)	7/142 (4.9)	11/43 (25.6)
Rd	16/389 (4.1)	6/184 (3.3)	7/155 (4.5)	3/50 (6)
ENDEAVOR ²				
Kd	38/463 (8.2)	10/223 (4.5)	12/163 (7.4)	16/77 (20.8)
Vd	13/456 (2.9)	5/208 (2.4)	5/183 (2.7)	3/65 (4.6)
FORTE ³				
KCyd	(3)	(3)	-	-
KRd	(5)	(5)	-	-
POOLED ANALYSIS ⁴				
KCyd	17/154 (11)	-	9/117 (7.7)	8/37 (21.6)

1.Dimopoulos M, et al; Lancet 2015. 2.Stewart K, et al; NEJM 2015. 3.Gay F, et al. ASCO 2017. 4.Mina R, at al. IMW 2017

Carfilzomib-Associated Cardiovascular Adverse Events

A Systematic Review and Meta-analysis

24 studies including 2594 patients

Rate of grade ≥3 CVAE

Study	Proportion (95% CI)		Weight, %
Jakubowiak et al, ²⁵ 2012	0.0 (0.0-0.1)		4.0
Alsina et al, ²⁶ 2012	0.1 (0.0-0.2)		3.8
Vij et al, ²⁷ 2012	0.1 (0.0-0.2)		3.3
Badros et al, ²⁸ 2013	0.1 (0.0-0.2)		3.9
Niesvizky et al, ²⁹ 2013	0.0 (0.0-0.1)		3.5
Siegal et al, ³⁰ 2013	0.1 (0.1-0.1)		6.5
Wang et al, ³¹ 2013	0.1 (0.0-0.1)		4.7
Berenson et al, ³² 2014	0.1 (0.0-0.2)		3.4
Bringhen et al, ³³ 2014	0.1 (0.0-0.2)		4.1
Lendvai et al, ³⁴ 2014	0.5 (0.3-0.6)		— 3.7
Papadopoulous et al, ³⁵ 2015	0.1 (0.1-0.2)		4.1
Sonneveld et al, ³⁶ 2015	0.1 (0.0-0.1)		4.9
Stewart et al, ⁵ 2015	0.1 (0.1-0.1)		5.3
Mikhael et al, ³⁷ 2015	0.1 (0.1-0.3)		4.3
Berdeja et al, ³⁸ 2015	0.1 (0.0-0.2)		3.7
Moreau et al, ³⁹ 2015	0.1 (0.0-0.2)		4.4
Vesole et al, ⁴⁰ 2015	0.0 (0.0-0.2)		2.1
Korde et al, ⁴¹ 2015	0.1 (0.0-0.2)		4.1
Shah et al, ⁴² 2015	0.0 (0.0-0.2)		3.1
Dimopolous et al, ⁶ 2016	0.2 (0.1-0.2)		5.4
Watanabe et al, ⁴³ 2016	0.1 (0.0-0.2)		3.9
Berenson et al, ⁴⁴ 2016	0.1 (0.1-0.2)		5.2
Hajek et al, ⁷ 2016	0.1 (0.0-0.1)		5.6
lida et al. ⁴⁵ 2016	0.0 (0.0-0.4)		1.1
Overall (<i>I</i> ² = 71.6%, <i>P</i> < .001)	0.1 (0.1-0.1)	•	100
		0 0.2 0.4 (0.6
8.2%	6	CVAE Rate	

Relative risk of CVAE in randomized clinical

trials Study	Arm 1 (% CVAE)	Arm 2 (% CVAE)	Relative Risk (95% CI)	 We %	eight,
Stewart et al, ⁵ 2015	KRd (11.4)	Rd (5.6)	1.9 (1.2-3.2)	3	8.3
Dimopolous et al, ⁶ 2016	Kd (16.2)	Vd (6.7)	2.2 (1.5-3.3)	5	7.8
Hajek et al, ⁷ 2016	Kd (5.1)	Cy ± Dex (1.3)	3.9 (0.8-18.0)		3.9
Overall: (<i>I</i> ² = 0.0%, <i>P</i> < .001)			2.2 (1.6-2.9)	10	0
				8 16	

Relative Risk

Carfilzomib-Associated Cardiovascular Adverse Events A Systematic Review and Meta-analysis

	All-Grade Adverse Events				Grade ≥3 Adverse Events					
Outcome	No. of Studies	% (95% CI)	P Value	1 ²	I ² P Value	No. of Studies	% (95% CI)	P Value	1 ²	I ² P Value
All events	22	18.1 (13.5-23.3)	<.001	87.4	<.001	24	8.2 (5.9-10.7)	<.001	71.6	<.001
Congestive heart failure	17	4.1 (2.3-6.2)	<.001	65.2	<.001	23	2.5 (1.5-3.8)	<.001	49.2	.004
Hypertension	16	12.2 (9.8-14.9)	<.001	54.1	.004	17	4.3 (2.6-6.4)	<.001	60.3	.001
Arrhythmia	13	2.4 (0.4-5.6)	.004	84.4	<.001	17	0.8 (0.3-1.4)	<.001	0	.86
lschemia	13	1.8 (0.8-3.0)	<.001	38.0	.08	18	0.8 (0.4-1.4)	<.001	0	.78
Cardiac arrest		NA	NA	NA	NA	24	0.0 (0.0-0.1)	>.99	0	.98
Dyspnea	17	23.9 (18.4-29.9)	<.001	88.4	<.001	18	3.2 (2.2-4.3)	<.001	29.5	.11
Edema	12	24.7 (21.0-28.6)	<.001	64.2	.001	12	0.4 (0.1-0.9)	<.001	0	.61

Abbreviation: NA, not applicable.

Subgroup Analysis of High-Grade Cardiovascular Adverse Events by Study Characteristics

	Estimate, % (95% CI)	Estimate, % (95% CI)		
Study Characteristic	No	Yes	P Value	
Median age >65 years	8.1 (5.4-11.2)	8.5 (5.6-11.9)	.95	
Phase 1 trial	9.5 (6.9-12.3)	2.3 (0.1-6.2)	.02ª	
Randomized trial	7.7 (5.2-10.5)	10.8 (5.8-17.0)	.48	
Newly diagnosed MM	8.7 (6.1-11.8)	6.7 (2.9-11.8)	.38	
≥3 Prior therapies	8.4 (5.4-12.0)	8.2 (4.6-12.5)	.87	
≥6 Months carfilzomib ^b	9.9 (5.7-15.0)	7.1 (4.2-10.7)	.26	
Dose ≥45 mg/m ²	6.4 (3.3-8.6)	11.9 (7.25-17.49)	.02ª	
30-Minute infusion	6.7 (4.9-8.8)	11.0 (6.4-16.5)	.06	
Combination regimen	10.6 (6.6-15.2)	6.5 (4.1-9.2)	.08	

Benefit-risk analysis in the ASPIRE and ENDEAVOR trials

ASPIRE

The results suggest that **the benefit of carfilzomib** treatment in reducing disease progression, and even death, **outweighs CV risks for most patients**.

ENDEAVOR

Chari A et, Blood Advance 2018 Jul 10

Carfilzomib-based regimens in real life

Table 4. Main studies conducted on real-life patients treated with carfilzomib-based regimens.

Study	Type of study	N. of patients	Rate of pre-existing CV history	Rate of CVAE
Atrash ⁵⁶	R	130	54%	11.5% hospitalized for heart failure
Chari [™]	R	498	84% of non-hospitalized; 92% of hospitalized patients	22% had \geq 1 CVAE; 5% had \geq 1 hospitalization for
Rosenthal	Р	62	20% baseline hypertension	8% had cardiac SAE; 32% had hypertension
Dimopoulos ⁶⁶	Р	60	28%	11.6% had a CVAE

R: retrospective; P: prospective; N.: number; CV: cardiovascular; CVAE: cardiovascular adverse event(s); SAE: serious adverse event(s).

Carfilzomib-based regimen in real life (KRd)

Patients (no. = 197)

Male: 58% Age <75 y: 97%

Cardiac risk factors recorded in 99 pts (50%):

- Hypertension (40%)
- Elevated NT-proBNP (>322 pg/ml) (8%)
- Left ventricular disfuncion (EF<55%) (6%)
- Coronary artery disease (4%)
- AL amyloidosis without cardiac involvement (1%)

TABLE 2 Adverse events (all grades and grade \geq 3)

	No. of patients (%)			
Adverse event	All grades	≥ grade 3		
Hematological				
Anemia	131 (66)	14 (7)		
Thrombocytopenia	124 (63)	36 (18)		
Neutropenia	98 (50)	41 (21)		
Non hematological				
Thrombotic events	22 (11)	7 (4)		
Gastrointestinal toxicities	33 (17)	3 (1)		
Elevated liver function tests	26 (13)	5 (2)		
Infections	72 (36)	21 (11)		
Skin rash	19 (10)	5 (3)		
Of specific interest (cardio-vascular)				
Hypertension	31 (16)	12 (6)		
Arrhythmia	12 (6)	1 (0.5)		
Heart failure	7 (3)	2 (1)		

Abbreviation: no, number.

Risk factors for cardiovascular disease

Current myocardial disease	Demographic and other CV risk factors
 Heart failure (with either preserved or reduced ejection fraction) Asymptomatic LV dysfunction (LVEF <50% or high natriuretic peptide^a) Evidence of CAD (previous myocardial infarction, angina, PCI or CABG, myocardial ischaemia) Moderate and severe VHD with LVH or LV impairment Hypertensive heart disease with LV hypertrophy Hypertrophic cardiomyopathy Dilated cardiomyopathy Cardiac sarcoidosis with myocardial involvement Significant cardiac arrhythmias (e.g.AF, ventricular tachyarrhythmias) 	 Age (paediatric population <18 years; >50 years for trastuzumab; >65 years for anthracyclines) Family history of premature CV disease (<50 years) Arterial hypertension Diabetes mellitus Hypercholesterolaemia
Previous cardiotoxic cancer treatment	Lifestyle risk factors
 Prior anthracycline use Prior radiotherapy to chest or mediastinum 	 Smoking High alcohol intake Obesity Sedentary habit

Risk factors for cardiovascular disease Blood pressure evaluation

Hypertension is defined as a SBP ≥140 mmHg and/or a DBP ≥90 mmHg on at least two BP measurements and should be confirmed with ABPM or HBPM:

- Ambulatory Blood Pressure Monitoring (ABPM):
 - portable blood pressure measuring device
 - for a 24 hours period
 - information on blood pressure
 - during daily activities
 - sleep
- Home Blood Pressure Monitoring (HBPM):
 - blood pressure self-measurements
 - daily for at least 3–4 d or preferably for 7 consecutive days

Risk factors for cardiovascular disease

Blood pressure evaluation

	ABPM	НВРМ
Primary care	-	+
Specialist care	+	-
Cost	++	-
24 hours	++	-
Daily activity	++	-
Sleep	++	-
Long period (at least 7 days)	-	++

For initial assessment \rightarrow HBPM may be more suitable. For borderline or abnormal findings on HBPM \rightarrow should be confirmed with ABPM

Risk stratification

Hypertension disease staging		BP (mmHg) grading			
	Other risk factors, HMOD, or disease	High normal SBP 130-139 DBP 85-89	Grade 1 SBP 140-159 DBP 90-99	Grade 2 SBP 160-179 DBP 100-109	Grade 3 SBP ≥180 or DBP ≥110
	No other risk factors	Low risk	Low risk	Moderate risk	High risk
Stage 1 (uncomplicated)	1 or 2 risk factors	Low risk	Moderate risk	Moderate to high risk	High risk
	≥3 risk factors	Low to Moderate risk	Moderate to high risk	High Risk	High risk
Stage 2 (asymptomatic disease)	HMOD, CKD grade 3, or diabetes mellitus without organ damage	Moderate to high risk	High risk	High risk	High to very high risk
Stage 3 (established disease)	Established CVD, CKD grade ≥4, or diabetes mellitus with organ damage	Very high risk	Very high risk	Very high risk	Very high risk

BP = blood pressure; CKD = chronic kidney disease; CV = cardiovascular; DBP = diastolic blood pressure; HMOD = hypertension-mediated organ damage; SBP = systolic blood pressure; SCORE = Systematic COronary Risk Evaluation.

Risk stratification in Multiple Myeloma

2022 Update

Risk factor	Score	Level of evidence
Previous CVD		
HF or cardiomyopathy	Very high	С
Prior PI cardiotoxicity	Very high	С
Venous thrombosis (DVT or PE)	Very high	C
Cardiac amyloidosis	Very high	С
Arterial vascular disease (IHD, PCI, CABG, stable angina, TIA, stroke, PVD)	Very high	С
Prior IMiD CV toxicity	High	B
Arrhythmia ^a	Medium2	С
Cardiac imaging		
Baseline LVEF < 50%	High	С
Borderline LVEF 50–54%	Medium2	С
LV hypertrophy ^b	Medium1	С
Cardiac biomarkers (where availabl	e)	
Elevated baseline troponin ^c	Medium2	С
Elevated baseline BNP or NT-proBNP ^c	High	B

- Low risk: no risk factors OR one medium1 risk factor;
- Medium risk: medium risk factors with a total of 2-4 points;
- High risk: medium risk factors with a total of \geq 5 points OR any high-risk factor;
- Very high risk: any very high-risk factor.

Medium1 = 1 point. Medium2 = 2 points.

Risk factor	Score	Level of evidence
Demographic and CVRF		
Age ≥ 75 years	High	С
Age 65–74 years	Medium1	С
Hypertension ^d	Medium1	С
DM ^e	Medium1	С
Hyperlipidaemia ^f	Medium1	C
Chronic kidney disease ^g	Medium1	C
Family history of thrombophilia	Medium1	С
Previous cardiotoxic cancer treatm	ent	
Prior anthracycline exposure	High	С
Prior thoracic spine RT	Medium1	С
Current myeloma treatment		
High-dose dexamethasone > 160 mg/ month	Medium1	С
Lifestyle risk factors		
Current smoker or significant smoking history	Medium1	с
Obesity (BMI > 30 kg/m ²)	Medium1	C

Alexander R. Lyon et al, European Heart Journal - Cardiovascular Imaging (2022) 00, 1–133

AF, atrial fibrillation; ATE, arterial thromboembolism; DM, diabetes mellitus; EMA, European Medicines Agency; FDA, Food and Drug Administration; HF, heart failure; HG, hyperglycaemia; HTN, hypertension; MedDRA, medical dictionary for regulatory activities; MI, myocardial infarction; PH, pulmonary hypertension; VTE, venous thromboembolism. Adverse reactions reported in multiple clinical trials or during post-marketing use are listed by system organ class (in MedDRA) and frequency. If the frequency is unknown or cannot be estimated from the available data, a blank space has been left. A Ixazomib produces peripheral oedema in up to 18% of patients and hyperglycaemia in combination with lenalidomide or pomalidomide and dexamethasone. Figure developed from EMA prescribing information, FDA prescribing information.

Management according to the risk

- No-risk patients \rightarrow start treatment with CFZ immediately.
- Low moderate risk patients \rightarrow
 - Treatment of hypertension
 - Correction of modifiable risk factors
- High-risk patients → case by case evaluation considering the risk/benefit ratio should be performed
- Very high-risk patients →
 - no data on CFZ treatment
 - most risk factors are not modifiable
 - other MM treatments should be preferred

Detection of cardiotoxicity

Table 6 Proposed diagnostic tools for the detection of cardiotoxicity

Technique	Currently available diagnostic criteria	Advantages	Major limitations
Echocardiography: - 3D-based LVEF - 2D Simpson's LVEF - GLS	 LVEF: >10 percentage points decrease to a value below the LLN suggests cardiotoxicity. GLS: >15% relative percentage reduction from baseline may suggest risk of cardiotoxicity. 	 Wide availability. Lack of radiation. Assessment of haemodynamics and other cardiac structures. 	 Inter-observer variability. Image quality. GLS: inter-vendor variability, technical requirements.
Nuclear cardiac imaging (MUGA)	 >10 percentage points decrease in LVEF with a value <50% identifies patients with cardiotoxicity. 	• Reproducibility.	 Cumulative radiation exposure. Limited structural and functional information on other cardiac structures.
Cardiac magnetic resonance	• Typically used if other techniques are non-diagnostic or to confirm the presence of LV dysfunction if LVEF is borderlines.	 Accuracy, reproducibility. Detection of diffuse myocardial fibrosis using T1/T2 mapping and ECVF evaluation. 	 Limited availability. Patient's adaptation (claustrophobia, breath hold, long acquisition times).
Cardiac biomarkers: - Troponin I - High-sensitivity Troponin I - BNP - NT-proBNP	 A rise identifies patients receiving anthracyclines who may benefit from ACE-Is. Routine role of BNP and NT-proBNP in surveillance of high-risk patient needs futher investigation. 	 Accuracy, reproducibility. Wide availability. High-sensitivity. 	 Insufficient evidence to establish the significance of subtle rises. Variations with different assays. Role for routine surveillance not clearly established.

EHA - EMN – SIIA Consensus

Bringhen s, Milan A et al J of Internal Medicine 2019

EHA - EMN – SIIA Consensus

Beta blockers

EHA - EMN – SIIA Consensus

EHA - EMN – SIIA Consensus

What to do after cardiovascular AEs

IN CASE OF CARDIOVASCULAR AEs DURING CARFILZOMIB TREATMENT:

- Cardiac disfunction during treatment → after cardiac function has recovered to grade 1 or baseline, no specific recommendations regarding further continuation or discontinuation of CFZ therapy.
- This decision should be taken by the hematologist in close collaboration with the cardiologist, evaluating both the clinical circumstances and the risks and benefits.
- Grade 3/4 cardiovascular AEs RELATED to CFZ → dose reductions or definitive discontinuation may be needed.
- Grade 3/4 cardiovascular AEs are NOT related to CFZ → CFZ treatment could be restarted at the dose used before the event or at a reduced dose.

Cardiovascular toxicity

Cardiac side effects:

- Congestive heart failure (CHF)
- Acute coronary syndrome (ACS)
- > Arrhythmias
- Cardiomyopathy

Vascular side effects:

- > Hypertension
- Venous thromboembolic events
- Arterial thromboembolic events

Cardiovascular toxicity with IMiDs

Patel VG and Cornell RD, Curr Oncol Rep (2019) 21: 29

Thromboembolic risk

Regimen	Grade 3-4 VTE (%)	
Rd vs placebo RRMM ^{1,2}	15 vs 4 11 vs 5	Prophylaxis NOT mandatory
MPT vs MP at diagnosis ³	17 vs 2 J 3	
Rd vs MPT at diagnosis ⁴	6-8 vs 5	Prophylaxis mandatory
Poma-dex vs dex in RRMM ⁵	1 vs 0	

1. Weber DM, et al. N Engl J Med. 2007 22;357(21):2133-42. 2. Dimopoulos M, et al. N Engl J Med. 2007 22;357(21):2123-32. 3. Palumbo A, et al. Lancet 2006;367(9513):825–831 4. Benboubker L, et al. N Engl J Med. 2014 4;371(10):906-17. 5, Miguel JS, et al. Lancet Oncol.

Thromboprophylaxis with IMIDs

IMWG recommendation

Individual Risk Factors	Actions
 Obesity Previous VTE Central venous catheter, pacemaker 	 LMWH (enoxaparin 40 mg/day or equivalent) Warfarin (target INR: 2-3)
 Associated diseases Cardiac Chronic renal disease Diabetes Acute infection Immobilization Blood clotting disorders Surgery, anesthesia, or trauma Medications ESAs 	 In general: Low risk (1 risk factor): patient should receive ASA 81-325 mg/day High risk: patient should receive therapeutic prophylactic anticoagulation with LMWH, warfarin
Myeloma-Related Risk Factors	
 Diagnosis Hyperviscosity Myeloma therapy High-dose dexamethasone Doxorubicin Multiagent chemotherapy 	 LMWH (enoxaparin 40 mg/day or equivalent) Warfarin (target INR: 2-3)

Palumbo A, et al. Leukemia. 2008 Feb;22(2):414-23

What to do in case of VTE

IMWG recommendation

Diagnosis:

- DVT: compression ultrasonography
- PE: computed tomography pulmonary angiography

Therapy:

- LMWH at therapeutic dose
- Oral anticoagulant

Briefly discontinue IMIDs

Resume the treatment when full anticoagulation has been established

Conclusion

- PIs (mainly Carfilzomib) are associated with increased risks of CVAEs (Mainly hypertension, dyspnea, followed by cardiac failure and ischemic heart disease)
- The benefit of Carfilzomib treatment in both PFS and OS outweighs CV risks
- Risk stratification and correction of modifiable risk factors is mandatory for a proper management
- In presence of CV risk factors \rightarrow consider to reduce Carfilzomib dose
- In high-risk patients or age ≥ 75 yrs → carefully consider the risk/benefit ratio. In very high-risk patients consider other MM treatments
- IMIDs (mostly in combination with steroids or chemotherapy) have an increased risk of VTE → Routine thromboprophylaxis according to the type of therapy and the individual risk of patients is mandatory.

THANK YOU

Seràgnoli Institute of Hematology

Myeloma Research Unit Michele Cavo

Clinical Research Unit

Elena Zamagni Paola Tacchetti Lucia Pantani Katia Mancuso Chiara Sartor Miriam Iezza Michele Puppi Marco Talarico Flavia Bigi Ilaria Sacchetti Enrica Manzato Roberta Restuccia Simone Masci

Data Management

Giorgia Lazzarini Francesca Trombetta Alessandra Scatà Simona Barbato Margherita Musella Nicola Paprusso Nicola Francesco Parisi Federica di Camillo

Lab of Cytogenetics Nicoletta Testoni Giulia Marzocchi

Lab of Molecular Biology

Carolina Terragna Marina Martello Enrica Borsi Silvia Armuzzi Ilaria Vigliotta Barbara Taurisano Ignazia Pistis

Statistical Analysis

Vincenza Solli Andrea Poletti Gaia Mazzocchetti