

II paziente Cardiopatico

Ilaria Rizzello

Istituto di Ematologia«Seragnoli», IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy

HIGHILIGHIIS IN EMATOLOGIA TREVISO, 1-2 DICEMBRE 2023

Disclosures of Ilaria Rizzello

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
GSK						X	X
Amgen							x
Sanofi							x
BMS							x

Cardiovascular Toxic Effects of Targeted Cancer Therapies

Anti-MM agents: 2023

Examples of Antimyeloma Therapy and Cardiac AEs

	Drug Class/Name	Reported Cardiac AEs
Chemotherapy ${ }^{1}$	Anthracyclines (e.g. doxorubicin, PLD) Alkylating agents (e.g. cyclophosphamide)	Systolic left ventricular dysfunction, heart failure Systolic left ventricular dysfunction, heart failure, pericardial effusion, myopericarditis
IMiDs	Thalidomide	Thromboembolism, bradycardia Thalidomide + dexamethasone vs placebo + dexamethasone in NDMM ${ }^{8}$ -Grade $3 / 4$ atrial fibrillation: 5% vs 3% -Grade $3 / 4$ myocardial ischemia: 3% vs 1%
	Lenalidomide	Thromboembolism, bradycardia Rd vs placebo + dexamethasone in relapsed MM^{7} -Grade $3 / 4$ cardiac failure congestive*: 1.4% vs 0.3% -Grade $3 / 4$ atrial fibrillation*: 3.7% vs 1.1%
	Pomalidomide	Thromboembolism POM + LoDex vs POM alone in RRMM ${ }^{6}$ -Cardiac failure congestive* SAE: 3% vs 0% -Atrial fibrillation* SAE: 3% vs 2%
Proteasome Inhibitors	Bortezomib	Hypotension Grade ≥ 3 heart failure*: \cdot Ranged from $<1.0 \%-4.7 \%$ with BTZ-based regimens across NDMM \& RRMM ${ }^{2}$ -Ranged from <1.0\%-3.9\% with non-BTZ-based regimens across NDMM \& RRMM ${ }^{2}$
	Carfilzomib	Hypertension, cardiac failure, dyspnea Grade ≥ 3 cardiac failure ${ }^{\dagger}$: -ASPIRE: 3.8% (KRd) vs $1.8 \%(\mathrm{Rd})$ in RRMM^{3} -ENDEAVOR: $4.8 \%(\mathrm{Kd})$ vs $1.8 \%(\mathrm{Vd})$ in RRMM ${ }^{4}$
	Ixazomib	Heart failure ${ }^{\dagger}$ (Grades 3/4): -TOURMALINE-MM1: 2.5% (IRd) vs 1.7% (Rd) in RRMM ${ }^{5}$

Cardiovascular toxicity

Cardiac side effects:
> Congestive heart failure (CHF)
$>$ Acute coronary syndrome (ACS)
$>$ Arrhythmias
$>$ Cardiomyopathy

Vascular side effects:
> Hypertension
$>$ Venous thromboembolic events
$>$ Arterial thromboembolic events

IMIDs

Cardiovascular toxicity with PIs

Cardiotoxicity associated with bortezomib vs. control

Studies	Estimate (95\% C.I.)			Ev/Trt	Ev/Ctrl
Richardson P.G. et al/2005/III	1.195	(0.771,	1.852)	50/331	43/332
Cavo M. et al/2010/ III	1.000	(0.286,	3.496)	5/236	5/236
Coiffier B. et a/2011/ III	2.763	(0.172,	44.271)	1/334	0/339
Garderet L. et al/2012/ III	1.899	(0.196,	18.418)	2/133	1/129
Harousseau J. L. et al/2010/ III	1.000	(0.466,	2.144)	14/239	14/239
Hjorth M. et al/2012/ III	1.051	(0.322,	3.432)	6/64	6/67
Overall ($\mathrm{I}^{\wedge} 2=0 \%, \mathrm{P}=0.977$)	1.154	0.819,	1.624)	78/1337	69/1342

high-grade

Cardiovascular toxicity with Carfilzomib

Table 1. Incidence (in \%) of cardiovascular events in natients with relapsed/refractory multiple myeloma treated with carfilzomib ies							Dyspnea All grades Grade ≥ 3	
	All grades	Grade ≥ 3	All grades	Grade ≥ 3	All grades	Grade ≥ 3		
Phase 3 studies								
ASPIRE ${ }^{374}$								
KRd group ($\mathrm{n}=392$)	14.3	4.3	6.4	3.8	5.9	3.3	19.4	2.8
Rd group ($\mathrm{n}=389$)	6.9	1.8	4.1	1.8	4.6	2.1	14.9	1.8
ENDEAVOR ${ }^{318}$								
Kd group ($\mathrm{n}=463$)	25	9	<9	<6	<3	<2	28	5
Vd group ($\mathrm{n}=456$)	9	3	<4	<3	<4	<3	13	2
FOCUS ${ }^{40}$								
Carfilzomib group ($\mathrm{n}=157$)	15	3	5	2			15	1
$\mathrm{CS} \pm$ cyclophosphamide group ($\mathrm{n}=158$)	6	0	1	1			9	0
Phase 2 studies ${ }^{38^{*}}$								
IKEMA								
IsaKd group ($\mathrm{n}=179$)	37	20	7	4	5	1	28	5
Kd group ($\mathrm{n}=123$)	31	20	7	4	4	2	21	1
CANDOR								
DaraKd group ($\mathrm{n}=308$)	31	18	7	5	4	3	20	4
Kd group ($\mathrm{n}=153$)	27	13	10	9	3	3	22	3

Carfilzomib: cardiovascular AEs

subgroup analysis

	All patients All grades heart failure n / N (\%)	< 65 years All grades heart failure n/N (\%)	65-74 years All grades heart failure n / N (\%)	≥ 75 years All grades heart failure n / N (\%)
ASPIRE ${ }^{1}$				
KRd	27/392 (6.9)	7/207 (3.4)	7/142 (4.9)	11/43 (25.6)
Rd	16/389 (4.1)	6/184 (3.3)	7/155 (4.5)	$3 / 50$ (6)
ENDEAVOR ${ }^{2}$				
Kd	38/463 (8.2)	10/223 (4.5)	12/163 (7.4)	16/77 (20.8)
Vd	13/456 (2.9)	5/208 (2.4)	5/183 (2.7)	3/65 (4.6)
FORTE ${ }^{3}$				
KCyd	(3)	(3)	-	-
KRd	(5)	(5)	-	-
POOLED ANALYSIS ${ }^{4}$				
KCyd	17/154 (11)	-	9/117 (7.7)	8/37 (21.6)

Carfilzomib-Associated Cardiovascular Adverse Events
 A Systematic Review and Meta-analysis

Rate of grade ≥ 3 CVAE

Relative risk of CVAE in randomized clinical

Carfilzomib-Associated Cardiovascular Adverse Events A Systematic Review and Meta-analysis

Outcome	All-Grade Adverse Events					Grade ≥ 3 Adverse Events				
	No. of Studies	\% (95\% CI)	P Value	1^{2}	$\begin{aligned} & \hline I^{2} \\ & P \text { Value } \end{aligned}$	No. of Studies	\% (95\% CI)	P Value	1^{2}	$\begin{aligned} & \hline I^{2} \\ & P \text { Value } \end{aligned}$
All events	22	$\frac{18.1}{(15.5-23.3)}$	<. 001	87.4	<. 001	24	$\frac{8.2}{(5.9-10.7)}$	<. 001	71.6	<. 001
Congestive heart failure	17	$\begin{aligned} & 4.1 \\ & (2.3-6.2) \end{aligned}$	<. 001	65.2	<. 001	23	$\begin{aligned} & 2.5 \\ & (1.5-3.8) \end{aligned}$	<. 001	49.2	. 004
Hypertension	16	$\begin{aligned} & 12.2 \\ & (9.8-14.9) \end{aligned}$	<. 001	54.1	. 004	17	$\begin{aligned} & 4.3 \\ & (2.6-6.4) \end{aligned}$	<. 001	60.3	. 001
Arrhythmia	13	$\begin{aligned} & 2.4 \\ & (0.4-5.6) \end{aligned}$. 004	84.4	<. 001	17	$\begin{aligned} & 0.8 \\ & (0.3-1.4) \end{aligned}$	<. 001	0	. 86
Ischemia	13	$\begin{aligned} & 1.8 \\ & (0.8-3.0) \end{aligned}$	<. 001	38.0	. 08	18	$\begin{aligned} & 0.8 \\ & (0.4-1.4) \end{aligned}$	<. 001	0	. 78
Cardiac arrest		NA	NA	NA	NA	24	$\begin{aligned} & 0.0 \\ & (0.0-0.1) \end{aligned}$	>. 99	0	. 98
Dyspnea	17 -	$\begin{aligned} & 23.9 \\ & (18.4-29.9) \end{aligned}$	<. 001	88.4	<. 001	18	$\begin{aligned} & 3.2 \\ & (2.2-4.3) \end{aligned}$	<. 001	29.5	. 11
Edema	$12 \quad \square$	$\begin{aligned} & 24.7 \\ & (21.0-28.6) \\ & \hline \end{aligned}$	<. 001	64.2	. 001	12	$\begin{aligned} & 0.4 \\ & (0.1-0.9) \end{aligned}$	<. 001	0	. 61

Abbreviation: NA, not applicable.

Subgroup Analysis of High-Grade Cardiovascular Adverse Events by Study Characteristics

	Estimate, \% (95\% CI)		
	No	Yes	P Value
Study Characteristic	$8.1(5.4-11.2)$	$8.5(5.6-11.9)$.95
Median age >65 years	$9.5(6.9-12.3)$	$2.3(0.1-6.2)$	$.02^{\text {a }}$
Phase 1 trial	$7.7(5.2-10.5)$	$10.8(5.8-17.0)$.48
Randomized trial	$8.7(6.1-11.8)$	$6.7(2.9-11.8)$.38
Newly diagnosed MM	$8.4(5.4-12.0)$	$8.2(4.6-12.5)$.87
≥ 3 Prior therapies	$9.9(5.7-15.0)$	$7.1(4.2-10.7)$.26
≥ 6 Months carfilzomib	$6.4(3.3-8.6)$	$11.9(7.25-17.49)$	$\left..02^{\text {b }}\right)$
Dose ≥ 45 mg $/ \mathrm{m}^{2}$	$6.7(4.9-8.8)$	$11.0(6.4-16.5)$.06
$30-M i n u t e ~ i n f u s i o n$	$10.6(6.6-15.2)$	$6.5(4.1-9.2)$.08
Combination regimen			

Benefit-risk analysis in the ASPIRE and ENDEAVOR trials

ASPIRE

The results suggest that the benefit of carfilzomib treatment in reducing disease progression, and even death, outweighs CV risks for most patients.

EINDEAVUK

Carfilzomib-based regimens in real life

Table 4. Main studies conducted on real-life patients treated with carfilzomib-based regimens.

Study	Type of study	N. of patients	Reate of pre-existing CV history	Rate of CV/AE
Atrash 56	R	130	54%	11.5% hospitalized for heart failure
Chari 64	R	498	84% of non-hospitalized; 92% of hospitalized patients	22% had ≥ 1 CVAE; 5% had ≥ 1 hospitalization for
Rosenthal 65	P	20% baseline hypertension	8% had cardiac SAE; 32% had hypertension	
Dimopoulos 66	P	62	28%	11.6% had a CVAE

R: retrospective; P: prospective; N.: number, CV: cardiovascular; CVAE: cardiovascular adverse event(s); SAE: serious adverse event(s).

Carfilzomib-based regimen in real life (KRd)

Patients (no. = 197)
Male: 58\%
Age < 75 y: 97\%

Cardiac risk factors recorded in 99 pts (50\%):

- Hypertension (40\%)
- Elevated NT-proBNP (>322 pg/ml) (8\%)
- Left ventricular disfuncion ($\mathrm{EF}<55 \%$) (6\%)
- Coronary artery disease (4\%)
- AL amyloidosis without cardiac involvement (1\%)

TABLE 2 Adverse events (all grades and grade ≥ 3)

	No. of patients (\%)	
	All grades	\geq grade 3
Adverse event		
Hematological	$131(66)$	$14(7)$
Anemia	$124(63)$	$36(18)$
Thrombocytopenia	$98(50)$	$41(21)$
Neutropenia		
Non hematological	$22(11)$	$7(4)$
Thrombotic events	$33(17)$	$3(13)$
Gastrointestinal toxicities	$72(36)$	$5(2)$
Elevated liver function tests	$19(10)$	$5(3)$
Infections		
Skin rash	$31(16)$	$12(6)$
Of specific interest (cardio-vascular)	$12(6)$	$1(0.5)$
Hypertension	$7(3)$	$2(1)$
Arrhythmia		

Risk factors for cardiovascular disease

Current myocardial disease	Demographic and other CV risk factors
- Heart failure (with either preserved or reduced ejection fraction) - Asymptomatic LV dysfunction (LVEF $<50 \%$ or high natriuretic peptide ${ }^{2}$) - Evidence of CAD (previous myocardial infarction, angina, PCl or CABG, myocardial ischaemia) - Moderate and severeVHD with LVH or LV impairment - Hypertensive heart disease with LV hypertrophy - Hypertrophic cardiomyopathy - Dilated cardiomyopathy - Restrictive cardiomyopathy - Cardiac sarcoidosis with myocardial involvement - Significant cardiac arrhythmias (e.g.AF, ventricular tachyarrhythmias)	- Age (paediatric population < 18 years; >50 years for trastuzumab; >65 years for anthracyclines) - Family history of premature CV disease (<50 years) - Arterial hypertension - Diabetes mellitus - Hypercholesterolaemia
Previous cardiotoxic cancer treatment	Lifestyle risk factors
- Prior anthracycline use - Prior radiotherapy to chest or mediastinum	- Smoking - High alcohol intake - Obesity - Sedentary habit

Risk factors for cardiovascular disease

Blood pressure evaluation
Hypertension is defined as a SBP $\geq 140 \mathrm{mmHg}$ and/or a DBP $\geq 90 \mathrm{mmHg}$ on at least two BP measurements and should be confirmed with ABPM or HBPM:

- Ambulatory Blood Pressure Monitoring (ABPM):
- portable blood pressure measuring device
- for a 24 hours period
- information on blood pressure
- during daily activities
- sleep
- Home Blood Pressure Monitoring (HBPM):
- blood pressure self-measurements
- daily for at least 3-4 d or preferably for 7 consecutive days

Risk factors for cardiovascular disease

Blood pressure evaluation

	ABPM	HBPM
Primary care	-	+
Specialist care	+	-
Cost	++	-
24 hours	++	-
Daily activity	++	-
Sleep	++	-
Long period (at least 7 days)	-	++

For initial assessment \rightarrow HBPM may be more suitable.
For borderline or abnormal findings on HBPM \rightarrow should be confirmed with ABPM

Risk stratification

Hypertension disease staging	Other risk factors, HMOD, or disease	$B P(\mathrm{mmHg})$ grading			
		High normal SBP 130-139 DBP 85-89	Grade 1 SBP 140-159 DBP 90-99	$\begin{gathered} \text { Grade } 2 \\ \text { SBP 160-179 } \\ \text { DBP 100-109 } \end{gathered}$	$\begin{gathered} \text { Grade } 3 \\ \text { SBP } \geq 180 \\ \text { or DBP } \geq 110 \end{gathered}$
Stage 1 (uncomplicated)	No other risk factors	Low risk	Low risk	Moderate risk	High risk
	1 or 2 risk factors	Low risk	Moderate risk	Moderate to high risk	High risk
	≥ 3 risk factors	Low to Moderate risk	Moderate to high risk	High Risk	High risk
Stage 2 (asymptomatic disease)	HMOD, CKD grade 3 , or diabetes mellitus without organ damage	Moderate to high risk	High risk	High risk	High to very high risk
Stage 3 (established disease)	Established CVD, CKD grade ≥ 4, or diabetes mellitus with organ damage	Very high risk	Very high risk	Very high risk	Very high risk

$\mathrm{BP}=$ blood pressure; $\mathrm{CKD}=$ chronic kidney disease; $\mathrm{CV}=$ cardiovascular; $\mathrm{DBP}=$ diastolic blood pressure;
HMOD = hypertension-mediated organ damage; SBP = systolic blood pressure; SCORE = Systematic COronary Risk Evaluation.

Risk stratification in Multiple Myeloma

2022 Update	Risk factor	Score	Level of evidence
Previous CVD			
HF or cardiomyopathy	Very high	C	
Prior PI cardiotoxicity	Very high	C	
Venous thrombosis (DVT or PE)	Very high	C	
Cardiac amyloidosis	Very high	C	
Arterial vascular disease (IHD, PCI, CABG, stable angina, TIA, stroke, PVD)	Very high	C	
Prior IMiD CV toxicity	High		
Arrhythmia			

- Low risk: no risk factors OR one medium1 risk factor;

Risk factor	Score	Level of evidence
Demographic and CVRF		
Age ≥ 75 years	High	C
Age 65-74 years	Medium1	C
Hypertension ${ }^{\text {d }}$	Medium1	C
$D M^{e}$	Medium1	C
Hyperlipidaemia ${ }{ }^{4}$	Medium1	C
Chronic kidney disease ${ }^{8}$	Medium1	C
Family history of thrombophilia	Medium1	C
Previous cardiotoxic cancer treatment		
Prior anthracycline exposure	High	C
Prior thoracic spine RT	Medium1	C
Current myeloma treatment		
High-dose dexamethasone > $160 \mathrm{mg} /$ month	Medium1	C
Lifestyle risk factors		
Current smoker or significant smoking history	Medium1	C
Obesity ($\mathrm{BMI}>30 \mathrm{~kg} / \mathrm{m}^{2}$)	Medium1	C

- Medium risk: medium risk factors with a total of 2-4 points;
- High risk: medium risk factors with a total of ≥ 5 points OR any high-risk factor;
- Very high risk: any very high-risk factor.

Medium1 $=1$ point. Medium2 $=2$ points.

AF, atrial fibrillation; ATE, arterial thromboembolism; DM, diabetes mellitus; EMA, European Medicines Agency; FDA, Food and Drug Administration; HF, heart failure; HG, hyperglycaemia; HTN, hypertension; MedDRA, medical dictionary for regulatory activities; MI, myocardial infarction; PH, pulmonary hypertension; VTE, venous thromboembolism. Adverse reactions reported in multiple clinical trials or during post-marketing use are listed by system organ class (in MedDRA) and frequency. If the frequency is unknown or cannot be estimated from the available data, a blank space has been left. A lxazomib produces peripheral oedema in up to 18% of patients and hyperglycaemia in combination with lenalidomide or pomalidomide and dexamethasone. Figure developed from EMA prescribing information, FDA prescribing information.

Management according to the risk

- No-risk patients \rightarrow start treatment with CFZ immediately.
- Low moderate risk patients \rightarrow
- Treatment of hypertension
- Correction of modifiable risk factors
- High-risk patients \rightarrow case by case evaluation considering the risk/benefit ratio should be performed
- Very high-risk patients \rightarrow
- no data on CFZ treatment
- most risk factors are not modifiable
- other MM treatments should be preferred

Detection of cardiotoxicity

Table 6 Proposed diagnostic tools for the detection of cardiotoxicity

Technique	Currently available diagnostic criteria	Advantages	Major limitations
Echocardiography: - 3D-based LVEF - 2D Simpson's LVEF - GLS	- LVEF: > 10 percentage points decrease to a value below the LLN suggests cardiotoxicity. - GLS: $>15 \%$ relative percentage reduction from baseline may suggest risk of cardiotoxicity.	- Wide availability. - Lack of radiation. - Assessment of haemodynamics and other cardiac structures.	- Inter-observer variability. - Image quality. - GLS: inter-vendor variability, technical requirements.
Nuclear cardiac imaging (MUGA)	- >10 percentage points decrease in LVEF with a value $<50 \%$ identifies patients with cardiotoxicity.	- Reproducibility.	- Cumulative radiation exposure. - Limited structural and functional information on other cardiac structures.
Cardiac magnetic resonance	- Typically used if other techniques are non-diagnostic or to confirm the presence of LV dysfunction if LVEF is borderlines.	- Accuracy, reproducibility. - Detection of diffuse myocardial fibrosis using TI/T2 mapping and ECVF evaluation.	- Limited availability. - Patient's adaptation (claustrophobia, breath hold, long acquisition times).
Cardiac biomarkers: - Troponin I - High-sensitivity Troponin I - BNP - NT-proBNP	- A rise identifies patients receiving anthracyclines who may benefit from ACE-Is. - Routine role of BNP and NT-proBNP in surveillance of high-risk patient needs futher investigation.	- Accuracy, reproducibility. - Wide availability. - High-sensitivity.	- Insufficient evidence to establish the significance of subtle rises. - Variations with different assays. - Role for routine surveillance not clearly established.

EHA - EMN - SIIA Consensus

EHA - EMN - SIIA Consensus

EHA - EMN - SIIA Consensus

- CFZ temporary held
- Echo
- Chest X-Ray
- Most patients with dyspnea do not typically show an EF impairment or other evidences of myocardial dysfunction.
- CFZ could be restarted as soon as symptoms improve.

EHA - EMN - SIIA Consensus

What to do after cardiovascular AEs

IN CASE OF CARDIOVASCULAR AEs DURING CARFILZOMIB TREATMENT:

- Cardiac disfunction during treatment \rightarrow after cardiac function has recovered to grade 1 or baseline, no specific recommendations regarding further continuation or discontinuation of CFZ therapy.
- This decision should be taken by the hematologist in close collaboration with the cardiologist, evaluating both the clinical circumstances and the risks and benefits.
- Grade 3/4 cardiovascular AEs RELATED to CFZ \rightarrow dose reductions or definitive discontinuation may be needed.
- Grade 3/4 cardiovascular AEs are NOT related to CFZ \rightarrow CFZ treatment could be restarted at the dose used before the event or at a reduced dose.

Cardiovascular toxicity

Cardiac side effects:

$>$ Congestive heart failure (CHF)
$>$ Acute coronary syndrome (ACS)
$>$ Arrhythmias
> Cardiomyopathy

Proteasome Inhibitors

Vascular side effects:

> Hypertension
$>$ Venous thromboembolic events
Arterial thromboembolic events

IMIDs

Cardiovascular toxicity with IMiDs

Thromboembolic risk

Regimen	Grade 3-4 VTE $(\%)$
Rd vs placebo RRMM 1,2	$\mathbf{1 5}$ vs 4 $\mathbf{1 1}$ vs 5
MPT vs MP at diagnosis ${ }^{3}$	$\mathbf{1 7}$ vs 2 \downarrow
3d vs MPT at diagnosis ${ }^{4}$	$\mathbf{6 - 8}$ vs 5
Poma-dex vs dex in RRMM 5	$\mathbf{1}$ vs 0

Thromboprophylaxis with IMIDs IMWG recommendation

Individual Risk Factors

- Obesity
- Previous VTE
- Central venous catheter, pacemaker
- Associated diseases
- Cardiac
- Chronic renal disease
- Diabetes
- Acute infection
- Immobilization
- Blood clotting disorders
- Surgery, anesthesia, or trauma
- Medications
- ESAs

Actions

- LMWH (enoxaparin $40 \mathrm{mg} /$ day or equivalent)
- Warfarin (target INR: 2-3)

In general:
- Low risk (1 risk factor): patient should receive
ASA $81-325 \mathrm{mg} /$ day
- High risk: patient should receive therapeutic
prophylactic anticoagulation with LMWH,
warfarin
MYELOMA IS A RISK FACTOR

Myeloma-RelatedRisk Factors

- Diagnosis
- Hyperviscosity
- Myeloma therapy
- High-dose dexamethasone
- Doxorubicin
- Multiagent chemotherapy
- LMWH (enoxaparin $40 \mathrm{mg} /$ day or equivalent)
- Warfarin (target INR: 2-3)

What to do in case of VTE
 IMWG recommendation

Diagnosis:

- DVT: compression ultrasonography
- PE: computed tomography pulmonary angiography

Therapy:

- LMWH at therapeutic dose
- Oral anticoagulant

Briefly discontinue IMIDs

Resume the treatment when full anticoagulation has been established

Conclusion

- PIs (mainly Carfilzomib) are associated with increased risks of CVAEs (Mainly hypertension, dyspnea, followed by cardiac failure and ischemic heart disease)
- The benefit of Carfilzomib treatment in both PFS and OS outweighs CV risks
- Risk stratification and correction of modifiable risk factors is mandatory for a proper management
- In presence of CV risk factors \rightarrow consider to reduce Carfilzomib dose
- In high-risk patients or age ≥ 75 yrs \rightarrow carefully consider the risk/benefit ratio. In very high-risk patients consider other MM treatments
- IMIDs (mostly in combination with steroids or chemotherapy) have an increased risk of $V T E \rightarrow$ Routine thromboprophylaxis according to the type of therapy and the individual risk of patients is mandatory.

THANK YOU
Seràgnoli Institute of Hematology

Myeloma Research Unit Michele Cavo

Clinical Research Unit Elena Zamagni Paola Tacchetti Lucia Pantani Katia Mancuso
Chiara Sartor
Miriam lezza
Michele Puppi
Marco Talarico Flavia Bigi
Ilaria Sacchetti
Enrica Manzato
Roberta Restuccia
Simone Masci

Data Management
Giorgia Lazzarini Francesca Trombetta
Alessandra Scatà
Simona Barbato
Margherita Musella
Nicola Paprusso
Nicola Francesco Parisi
Federica di Camillo
Lab of Cytogenetics
Nicoletta Testoni
Giulia Marzocchi
Lab of Molecular Biology
Carolina Terragna
Marina Martello
Enrica Borsi
Silvia Armuzzi
Ilaria Vigliotta
Barbara Taurisano
Ignazia Pistis
Statistical Analysis
Vincenza Solli
Andrea Poletti
Gaia Mazzocchetti

